proof-induction-02cad33d-c103-4f86-972b-d0111325c19b
Proof by Induction
1. Mathematical Induction basic proofs
Lets's being with a formula
e
i
π
+
1
=
0
e
i
π
+
1
=
0
e^(i pi)+1=0 e^{i\pi}+1=0 e i π + 1 = 0 but we can also do
e
=
lim
n
→
∞
(
1
+
1
n
)
n
e
=
lim
n
→
∞
1
+
1
n
n
e=lim_(n rarr oo)(1+(1)/(n))^(n) e= \lim_{n\to\infty} \left (1+\frac{1}{n} \right)^n e = lim n → ∞ ( 1 + 1 n ) n
Prove that for each integer
n
≥
1
n
≥
1
n >= 1 n \geq 1 n ≥ 1 ,
A
(
n
)
:
1
+
2
+
⋯
+
n
=
n
(
n
+
1
)
2
A
(
n
)
:
1
+
2
+
⋯
+
n
=
n
(
n
+
1
)
2
A(n):1+2+cdots+n=(n(n+1))/(2) A(n): 1 + 2 + \cdots + n = \frac{n(n+1)}{2} A ( n ) : 1 + 2 + ⋯ + n = n ( n + 1 ) 2
Base Case:
Proving that it works for
n
=
1
n
=
1
n=1 n = 1 n = 1 is the first step in showing the formula works:
For
n
=
1
n
=
1
n=1 n = 1 n = 1 :
A
(
1
)
=
1
=
1
(
1
+
1
)
2
=
2
2
=
1
A
(
1
)
=
1
=
1
(
1
+
1
)
2
=
2
2
=
1
A(1)=1=(1(1+1))/(2)=(2)/(2)=1 A(1) = 1 = \frac{1(1+1)}{2} = \frac{2}{2} = 1 A ( 1 ) = 1 = 1 ( 1 + 1 ) 2 = 2 2 = 1
Therefore, the base case is true.
Inductive Hypothesis:
The second phase of the proof requires the assumption that the formula is true for any integer
n
≥
1
n
≥
1
n >= 1 n \geq 1 n ≥ 1 :
A
(
n
)
=
1
+
2
+
⋯
+
n
=
n
(
n
+
1
)
2
A
(
n
)
=
1
+
2
+
⋯
+
n
=
n
(
n
+
1
)
2
A(n)=1+2+cdots+n=(n(n+1))/(2) A(n) = 1 + 2 + \cdots + n = \frac{n(n+1)}{2} A ( n ) = 1 + 2 + ⋯ + n = n ( n + 1 ) 2
Inductive Step:
The third phase requires that the formula hold for
n
+
1
n
+
1
n+1 n + 1 n + 1 :
A
(
n
+
1
)
=
1
+
2
+
⋯
+
n
+
(
n
+
1
)
A
(
n
+
1
)
=
1
+
2
+
⋯
+
n
+
(
n
+
1
)
A(n+1)=1+2+cdots+n+(n+1) A(n+1) = 1 + 2 + \cdots + n + (n+1) A ( n + 1 ) = 1 + 2 + ⋯ + n + ( n + 1 )
Using the inductive hypothesis, we have:
A
(
n
+
1
)
=
n
(
n
+
1
)
2
+
(
n
+
1
)
A
(
n
+
1
)
=
n
(
n
+
1
)
2
+
(
n
+
1
)
A(n+1)=(n(n+1))/(2)+(n+1) A(n+1) = \frac{n(n+1)}{2} + (n+1) A ( n + 1 ) = n ( n + 1 ) 2 + ( n + 1 )
Combine the terms and simplify:
A
(
n
+
1
)
=
n
(
n
+
1
)
+
2
(
n
+
1
)
2
=
(
n
+
1
)
(
n
+
2
)
2
A
(
n
+
1
)
=
n
(
n
+
1
)
+
2
(
n
+
1
)
2
=
(
n
+
1
)
(
n
+
2
)
2
A(n+1)=(n(n+1)+2(n+1))/(2)=((n+1)(n+2))/(2) A(n+1) = \frac{n(n+1) + 2(n+1)}{2} = \frac{(n+1)(n+2)}{2} A ( n + 1 ) = n ( n + 1 ) + 2 ( n + 1 ) 2 = ( n + 1 ) ( n + 2 ) 2
Thus, the formula holds for
n
+
1
n
+
1
n+1 n+1 n + 1 , and by mathematical induction, it holds for all
n
≥
1
n
≥
1
n >= 1 n \geq 1 n ≥ 1
% NEXT PROOF
\bigskip
Proposition: If
n
∈
N
n
∈
N
n inN n \in \mathbb{N} n ∈ N , then
1
+
3
+
5
+
7
+
⋯
+
(
2
n
−
1
)
=
n
2
.
1
+
3
+
5
+
7
+
⋯
+
(
2
n
−
1
)
=
n
2
.
1+3+5+7+cdots+(2n-1)=n^(2). 1 + 3 + 5 + 7 + \dots + (2n - 1) = n^2. 1 + 3 + 5 + 7 + ⋯ + ( 2 n − 1 ) = n 2 .
Proof: We will prove this by mathematical induction.
Base Case: For
n
=
1
n
=
1
n=1 n = 1 n = 1 , the left-hand side is simply the first odd number:
1
=
1
2
.
1
=
1
2
.
1=1^(2). 1 = 1^2. 1 = 1 2 .
This is true, so the base case holds.
Inductive Hypothesis: Assume that the formula is true for some arbitrary
k
k
k k k , i.e., assume that:
1
+
3
+
5
+
⋯
+
(
2
k
−
1
)
=
k
2
.
1
+
3
+
5
+
⋯
+
(
2
k
−
1
)
=
k
2
.
1+3+5+cdots+(2k-1)=k^(2). 1 + 3 + 5 + \dots + (2k - 1) = k^2. 1 + 3 + 5 + ⋯ + ( 2 k − 1 ) = k 2 .
This is called the inductive hypothesis .
Inductive Step: We must show that if the formula is true for
k
k
k k k , then it is also true for
k
+
1
k
+
1
k+1 k+1 k + 1 . That is, we need to show:
1
+
3
+
5
+
⋯
+
(
2
k
−
1
)
+
[
2
(
k
+
1
)
−
1
]
=
(
k
+
1
)
2
.
1
+
3
+
5
+
⋯
+
(
2
k
−
1
)
+
[
2
(
k
+
1
)
−
1
]
=
(
k
+
1
)
2
.
1+3+5+cdots+(2k-1)+[2(k+1)-1]=(k+1)^(2). 1 + 3 + 5 + \dots + (2k - 1) + [2(k+1) - 1] = (k+1)^2. 1 + 3 + 5 + ⋯ + ( 2 k − 1 ) + [ 2 ( k + 1 ) − 1 ] = ( k + 1 ) 2 .
Using the inductive hypothesis, we know:
1
+
3
+
5
+
⋯
+
(
2
k
−
1
)
=
k
2
.
1
+
3
+
5
+
⋯
+
(
2
k
−
1
)
=
k
2
.
1+3+5+cdots+(2k-1)=k^(2). 1 + 3 + 5 + \dots + (2k - 1) = k^2. 1 + 3 + 5 + ⋯ + ( 2 k − 1 ) = k 2 .
Adding the next odd number
2
(
k
+
1
)
−
1
=
2
k
+
1
2
(
k
+
1
)
−
1
=
2
k
+
1
2(k+1)-1=2k+1 2(k+1) - 1 = 2k + 1 2 ( k + 1 ) − 1 = 2 k + 1 , we have:
k
2
+
(
2
k
+
1
)
.
k
2
+
(
2
k
+
1
)
.
k^(2)+(2k+1). k^2 + (2k + 1). k 2 + ( 2 k + 1 ) .
Simplifying the right-hand side:
k
2
+
2
k
+
1
=
(
k
+
1
)
2
.
k
2
+
2
k
+
1
=
(
k
+
1
)
2
.
k^(2)+2k+1=(k+1)^(2). k^2 + 2k + 1 = (k+1)^2. k 2 + 2 k + 1 = ( k + 1 ) 2 .
Thus, the formula holds for
k
+
1
k
+
1
k+1 k+1 k + 1 .
Conclusion: Since the formula holds for
n
=
1
n
=
1
n=1 n = 1 n = 1 (the base case), and we have shown that if it holds for
n
=
k
n
=
k
n=k n = k n = k , it must also hold for
n
=
k
+
1
n
=
k
+
1
n=k+1 n = k+1 n = k + 1 , by the principle of mathematical induction, the formula is true for all
n
∈
N
n
∈
N
n inN n \in \mathbb{N} n ∈ N .
Therefore, we have proven that:
1
+
3
+
5
+
⋯
+
(
2
n
−
1
)
=
n
2
.
1
+
3
+
5
+
⋯
+
(
2
n
−
1
)
=
n
2
.
1+3+5+cdots+(2n-1)=n^(2). 1 + 3 + 5 + \dots + (2n - 1) = n^2. 1 + 3 + 5 + ⋯ + ( 2 n − 1 ) = n 2 .
\bigskip%NEXTPROOF\documentclass{article}\usepackage{amsmath}
\begin{document}
Proposition: If
n
n
n n n is a non-negative integer, then
5
∣
(
n
5
−
n
)
5
∣
(
n
5
−
n
)
5∣(n^(5)-n) 5 \mid (n^5 - n) 5 ∣ ( n 5 − n ) .
Proof: We will prove the proposition by mathematical induction.
Step 1: Base Case (
n
=
0
n
=
0
n=0 n = 0 n = 0 ):
We need to check if the proposition holds when
n
=
0
n
=
0
n=0 n = 0 n = 0 .
n
5
−
n
=
0
5
−
0
=
0
n
5
−
n
=
0
5
−
0
=
0
n^(5)-n=0^(5)-0=0 n^5 - n = 0^5 - 0 = 0 n 5 − n = 0 5 − 0 = 0
Since
5
5
5 5 5 divides
0
0
0 0 0 , the base case holds true.
Step 2: Inductive Hypothesis:
Assume that the proposition holds for some non-negative integer
k
k
k k k , i.e.,
5
∣
(
k
5
−
k
)
5
∣
(
k
5
−
k
)
5∣(k^(5)-k) 5 \mid (k^5 - k) 5 ∣ ( k 5 − k )
This means there exists some integer
m
m
m m m such that:
k
5
−
k
=
5
m
k
5
−
k
=
5
m
k^(5)-k=5m k^5 - k = 5m k 5 − k = 5 m
Step 3: Inductive Step:
We need to prove that the proposition holds for
k
+
1
k
+
1
k+1 k + 1 k + 1 , i.e., we need to show that
5
∣
(
(
k
+
1
)
5
−
(
k
+
1
)
)
5
∣
(
(
k
+
1
)
5
−
(
k
+
1
)
)
5∣((k+1)^(5)-(k+1)) 5 \mid ((k+1)^5 - (k+1)) 5 ∣ ( ( k + 1 ) 5 − ( k + 1 ) ) .
Expand
(
k
+
1
)
5
(
k
+
1
)
5
(k+1)^(5) (k+1)^5 ( k + 1 ) 5 using the binomial theorem:
(
k
+
1
)
5
=
k
5
+
5
k
4
+
10
k
3
+
10
k
2
+
5
k
+
1
(
k
+
1
)
5
=
k
5
+
5
k
4
+
10
k
3
+
10
k
2
+
5
k
+
1
(k+1)^(5)=k^(5)+5k^(4)+10k^(3)+10k^(2)+5k+1 (k+1)^5 = k^5 + 5k^4 + 10k^3 + 10k^2 + 5k + 1 ( k + 1 ) 5 = k 5 + 5 k 4 + 10 k 3 + 10 k 2 + 5 k + 1
Now subtract
(
k
+
1
)
(
k
+
1
)
(k+1) (k+1) ( k + 1 ) from this expression:
(
k
+
1
)
5
−
(
k
+
1
)
=
(
k
5
+
5
k
4
+
10
k
3
+
10
k
2
+
5
k
+
1
)
−
(
k
+
1
)
(
k
+
1
)
5
−
(
k
+
1
)
=
k
5
+
5
k
4
+
10
k
3
+
10
k
2
+
5
k
+
1
−
(
k
+
1
)
(k+1)^(5)-(k+1)=(k^(5)+5k^(4)+10k^(3)+10k^(2)+5k+1)-(k+1) (k+1)^5 - (k+1) = \left( k^5 + 5k^4 + 10k^3 + 10k^2 + 5k + 1 \right) - (k + 1) ( k + 1 ) 5 − ( k + 1 ) = ( k 5 + 5 k 4 + 10 k 3 + 10 k 2 + 5 k + 1 ) − ( k + 1 )
Simplifying:
(
k
+
1
)
5
−
(
k
+
1
)
=
k
5
+
5
k
4
+
10
k
3
+
10
k
2
+
4
k
(
k
+
1
)
5
−
(
k
+
1
)
=
k
5
+
5
k
4
+
10
k
3
+
10
k
2
+
4
k
(k+1)^(5)-(k+1)=k^(5)+5k^(4)+10k^(3)+10k^(2)+4k (k+1)^5 - (k+1) = k^5 + 5k^4 + 10k^3 + 10k^2 + 4k ( k + 1 ) 5 − ( k + 1 ) = k 5 + 5 k 4 + 10 k 3 + 10 k 2 + 4 k
Factor out
5
5
5 5 5 from the terms where it's present:
(
k
+
1
)
5
−
(
k
+
1
)
=
(
k
5
−
k
)
+
5
(
k
4
+
2
k
3
+
2
k
2
+
k
)
(
k
+
1
)
5
−
(
k
+
1
)
=
(
k
5
−
k
)
+
5
(
k
4
+
2
k
3
+
2
k
2
+
k
)
(k+1)^(5)-(k+1)=(k^(5)-k)+5(k^(4)+2k^(3)+2k^(2)+k) (k+1)^5 - (k+1) = (k^5 - k) + 5(k^4 + 2k^3 + 2k^2 + k) ( k + 1 ) 5 − ( k + 1 ) = ( k 5 − k ) + 5 ( k 4 + 2 k 3 + 2 k 2 + k )
By the inductive hypothesis, we know that
5
∣
(
k
5
−
k
)
5
∣
(
k
5
−
k
)
5∣(k^(5)-k) 5 \mid (k^5 - k) 5 ∣ ( k 5 − k ) . Thus,
k
5
−
k
=
5
m
k
5
−
k
=
5
m
k^(5)-k=5m k^5 - k = 5m k 5 − k = 5 m for some integer
m
m
m m m .
Therefore:
(
k
+
1
)
5
−
(
k
+
1
)
=
5
m
+
5
(
k
4
+
2
k
3
+
2
k
2
+
k
)
(
k
+
1
)
5
−
(
k
+
1
)
=
5
m
+
5
(
k
4
+
2
k
3
+
2
k
2
+
k
)
(k+1)^(5)-(k+1)=5m+5(k^(4)+2k^(3)+2k^(2)+k) (k+1)^5 - (k+1) = 5m + 5(k^4 + 2k^3 + 2k^2 + k) ( k + 1 ) 5 − ( k + 1 ) = 5 m + 5 ( k 4 + 2 k 3 + 2 k 2 + k )
=
5
(
m
+
k
4
+
2
k
3
+
2
k
2
+
k
)
=
5
(
m
+
k
4
+
2
k
3
+
2
k
2
+
k
)
=5(m+k^(4)+2k^(3)+2k^(2)+k) = 5(m + k^4 + 2k^3 + 2k^2 + k) = 5 ( m + k 4 + 2 k 3 + 2 k 2 + k )
Since
m
+
k
4
+
2
k
3
+
2
k
2
+
k
m
+
k
4
+
2
k
3
+
2
k
2
+
k
m+k^(4)+2k^(3)+2k^(2)+k m + k^4 + 2k^3 + 2k^2 + k m + k 4 + 2 k 3 + 2 k 2 + k is an integer, this shows that
5
∣
(
(
k
+
1
)
5
−
(
k
+
1
)
)
5
∣
(
(
k
+
1
)
5
−
(
k
+
1
)
)
5∣((k+1)^(5)-(k+1)) 5 \mid ((k+1)^5 - (k+1)) 5 ∣ ( ( k + 1 ) 5 − ( k + 1 ) ) .
Conclusion:
By the principle of mathematical induction, we have shown that
5
∣
(
n
5
−
n
)
5
∣
(
n
5
−
n
)
5∣(n^(5)-n) 5 \mid (n^5 - n) 5 ∣ ( n 5 − n ) for all non-negative integers
n
n
n n n . Thus, the proposition is true.
\end{document}